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Abstract

Mass transport in a boundary layer with suction was studied for a parallel flow, laminar regime and high Peclet

number. Mass transport mechanisms involved were analyzed and the respective mass transport fluxes were quantified

by numerical methods. According to the magnitude of the convective fluxes, mass transport regimes were established. A

simple, but accurate equation was deduced to identify the dominant convective flux and the transport regime. This

identification only requires measurable variables combined in dimensionless groups. The accuracy of the equation was

proved through the numerical solution of the governing flow and mass transport equations. The concentration field

inside the mass boundary layer and the concentration polarization level at the permeable surface are intrinsically related

with the dominant convective flux. A simple equation was deduced relating the concentration polarization level at the

permeable surface and the parameter Xjz , which characterizes the transport regime.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Mass transfer in a boundary layer over a permeable

surface with suction is a relevant topic with a wide range of

applications, in particular in membrane separation pro-

cesses: microfiltration, reverse osmosis and ultrafiltration.

For high Peclet numbers, the mass boundary layer is

very thin, and a detailed study of the flow and mass

transport mechanisms is complex. Several studies have

been done, but there are yet some questions without a

definitive answer. How suctionmodifies the flow inside the

mass boundary layer? How the normal velocity compo-

nent changes inside the mass boundary layer? How the

normal convective mass flux is related to the diffusive mass

flux promoted by the normal concentration gradient?

What is the importance of the transversal convective mass

flux to the concentration field inside the boundary layer? Is
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it possible to know, �aa priori, the dominant convectivemass

transport flux inside the boundary layer? These and other

questions appear frequently in several works and, in most

of them, some simplifications are assumed.

Brian [1] conceptualized the stagnant film model for a

permeable plate with suction. This model was built over

some flow and mass transport assumptions: the inexis-

tence of transversal velocity component, uniform nor-

mal velocity component, and equal normal convective

and diffusive mass fluxes. Several authors, Probstein

et al. [2], Trettin and Doshi [3] and Zidney [4] discussed

the stagnant model and the respective equation, putting

in relevance the inaccuracy of the assumptions.

The main drawback to answer to all these questions

and to test the validity of the stagnant film equation is the

difficulty in measuring the velocity and concentration

fields inside the mass boundary layer. Velocity and con-

centration fields can only be determined by numerical

solution of the governing momentum and mass solute

balance equations, solved with appropriate boundary

conditions. With the numerical predictions, it is possible
ed.
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Nomenclature

c normalized solute concentration

c0 normalized solute concentration in the bulk

(¼ 1)

cm normalized solute concentration at the per-

meable surface

C solute concentration (kg/m3)

C0 solute concentration in the feed (kg/m3)

Cm solute concentration at the permeable sur-

face (kg/m3)

D molecular diffusivity (m2/s)

Fvx local ratio between the variation of the

transversal convective transport and the

variation of the normal diffusive transport

Fvz local ratio between the variation of the

normal convective transport and the varia-

tion of the normal diffusive transport

H distance between parallel plates (m)

Ic concentration polarization index based on

the surface concentration

jz normalized velocity perturbation in z-direc-
tion

km mass transfer coefficient (m/s)

Rm permeable surface flow resistance (Pa sm�1)

vm normalized velocity at the permeable surface

(m/s)

vx normalized transversal velocity component

vz normalized normal velocity component

V0 mean inlet velocity (m/s)

Vm velocity at the permeable surface (m/s)

Vx transversal velocity component (m/s)

Vz normal velocity component (m/s)

x normalized transversal coordinate

z normalized normal coordinate

X tranversal coordinate (m)

Z normal coordinate (m)

Non-dimensional numbers

Pe Peclet number ¼ HV0
D

� �

Re Reynolds number ¼ qHV0
l

� �

Shm Sherwood number characterizing the mass

transfer between the fluid at the permeable

surface and the bulk ¼ kmH
D

� �

Shmln Sherwood number based in the stagnant film

theory ¼ kmlnH
D

� �

Shi Sherwood number in an impermeable sys-

tem ¼ kiH
D

� �

Shic Sherwood number in an impermeable sys-

tem with uniform concentration at the wall

¼ kicH
D

� �

Shif Sherwood number in an impermeable sys-

tem with uniform mass production at the

wall ¼ kifH
D

� �

Pv
DPm � p0

RmV0

Pp0

p0

DPm

X1

PePv

Shmln

Greek symbols

d99% normalized mass boundary layer thickness;

distance from the permeable surface to z
where the following condition is observed,

ðC � C0Þ=ðCm � C0Þ ¼ 0:01
DPm static pressure difference across the perme-

able surface (Pa)

l dynamic viscosity of the feed (Pa s)

p0 osmotic pressure in the liquid over the sur-

face with concentration C0 (Pa)

q density of the feed solution (kg/m3)

Xvz mean (along z-direction) amount of mass

deviated from the normal diffusive flux by

the normal convective flux

Xjz Xvz

776 J.M. Miranda, J.B.L.M. Campos / International Journal of Heat and Mass Transfer 47 (2004) 775–785
to compare and to quantify the mass transport mecha-

nisms, to interpret their effects, and to establish mass

transfer regimes for any operating conditions.

In this work, an effort is made to deduce a simple

equation, with practical utility, which relates the mass

transfer regime with the operating conditions. The study

is done for a parallel plate cell with a laminar and well-

developed flow, and for high Peclet numbers. In the lit-

erature, there are several works concerning the numerical

prediction of concentration and velocity profiles inside
a mass boundary layer with suction: Kleinstreuer and

Paller [5], Bhattacharyya et al. [6], Bouchard et al. [7],

Bhattacharjee et al. [8], Ganguly and Bhattacharya [9],

Bhattacharya and Hwang [10], and De et al. [11]. In spite

of this long list, none of these authors analysed the mass

transfer mechanisms and the mass transport regimes in

the fundamental point of view developed in this work.

In the next section the theory is developed, after-

wards the numerical work is briefly described, and at

last, the results are presented and discussed.
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2. Theoretical analysis

Inside a two-dimensional boundary layer over a

permeable surface with suction, the solute transport

equation has four terms, each one associated with a

mass transport mechanism:

vx
oc
ox

þ vz
oc
oz

¼ 1

Pe
o2c
ox2

�
þ o2c

oz2

�
ð1Þ

where c is the solute concentration normalized by the

bulk concentration, v the fluid velocity normalized by

the mean velocity of the bulk, x and z the transversal and
normal coordinates normalized by the height of the

channel, H , and Pe the Peclet number.

The terms on the left side of the equation are asso-

ciated with mass transport by convection along the

tangential, x, and axial, z, directions, while the terms on

the right side are associated with mass transport by

diffusion along the tangential, x, and axial, z, directions.
In a steady mass boundary layer, the concentration

gradient in the transversal direction is always much

lower than the concentration gradient in the axial di-

rection, this one through the thin mass boundary layer.

Therefore, the diffusive transport in the transversal di-

rection is small and can be neglected when compared

with the others transport terms. The solute mass trans-

port equation can be re-written without this term:

vx
oc
ox

þ vz
oc
oz

¼ 1

Pe
o2c
oz2

ð2Þ

Each term of Eq. (2) can be associated to mass flux

differences at the outlet and inlet, the net flux, of an

infinitesimal element of volume placed inside the mass

boundary layer. For example:

vx
oc
ox

� �
dx � vxcjxþdx � vxcjx ð3Þ

Fig. 1 shows an infinitesimal volume with the respective

mass fluxes entering and leaving the element. In the
xxcv xx
cvx δ+

zzz

c

Pe
δ+∂

∂1
zzmcv

δ+

zz

c

Pe ∂

∂1
zmcv

Fig. 1. Infinitesimal control volume inside the mass boundary

layer.
steady state, the diffusional mass flux at the inlet of the

infinitesimal volume, coming from the permeable sur-

face, is always higher than the diffusional mass flux

leaving the infinitesimal volume, going into the direction

of the bulk. This decrease must be balance by an in-

crease of the transversal convective transport and/or of

the normal convective transport, i.e.:

the net diffusing flux in the volume of control

¼ the net normal convective flux

þ the net transversal convective flux

An appropriate picture is the departure by convection

of some of the mass traveling by diffusion from the per-

meable surface to the bulk. This mass is incorporated into

the normal convective flux, returning to the surface, and/

or into the transversal convective flux, spreading along

the boundary layer. The concentration profiles in the

boundary layer depend on which mechanism is the most

‘‘powerful’’ to deviate the mass traveling by diffusion. If it

is the convective transport in the normal direction, the

solute concentration over the permeable surface is high

and themass gradients, in axial and transversal directions,

are high. If it is the convective transport in the transversal

direction, the solute concentration over the surface is low

and the mass gradients, in both directions, are low.

The ‘‘strength’’ of the convective mechanisms is the

source of the mass transfer regimes inside the mass

boundary. Therefore, it is important to have a para-

meter, with physical meaning, to quantify the ‘‘strength’’

of the convective mechanisms. With this purpose, a

parameter was defined which weights the variation of

the transversal convective transport, first term of Eq. (2),

with respect to the variation of the normal diffusive

transport, third term of Eq. (2):

Fvx ¼
oðvxcÞ
ox

1

Pe
o2c
oz2

ð4Þ

Another parameter could be defined, weighting the

variation of the normal convective transport, second

term of Eq. (2), in respect to the variation of the normal

diffusive transport, third term of Eq. (2):

Fvz ¼
oðvzcÞ
oz

1

Pe
o2c
oz2

ð5Þ

According to Eq. (2), the sum of these two parameters

must be equal to one:

Fvx þ Fvz ¼ 1 ð6Þ

The mean relative amount of mass deviated inside the

boundary layer by normal convection is given integrat-

ing each term of the ratio Fvz along the normal direction:
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XvZ ¼

Z d

0

oðvzcÞ
oz

dz
Z d

0

1

Pe
o2c
oz2

dz

ð7Þ

The integration of the normal convective term is possible

if, inside the mass boundary layer, the normal fluid ve-

locity, vz, is uniform along z. In a developed laminar flow

between two parallel plates, the magnitude of the nor-

mal velocity component is equal to the normal pertur-

bation induced in the flow by the suction, since the

normal velocity component in the analogous imperme-

able device is zero. This velocity perturbation is going to

be designated by jz (normalized by the mean velocity in

the bulk). If this velocity/perturbation is uniform along

the normal direction, it must be equal to the normalized

permeate velocity, vm (the normal velocity at z ¼ 0).

Xjz ¼

Z d

0

oðjzcÞ
oz

dz
Z d

0

1

Pe
o2c
oz2

dz

¼

Z jzc0

jzcm

oðjzcÞ

1

Pe

Z d

0

o
oc
oz
oz

dz

ð8Þ

or

Xjz ¼

Z d

0

oðjzcÞ
oz

dz
Z d

0

1

Pe
o2c
oz2

dz

¼

Z jzc0

jzcm

oðjzcÞ

1

Pe

Z 0

oc
ozjz¼0

o
oc
oz

¼ jzðcm � c0Þ
1

Pe
oc
oz

����
z¼0

ð9Þ

where d is the normalized mass boundary layer thick-

ness, c0 the normalized concentration in the bulk

ðc0 ¼ 1Þ, and cm the normalized concentration at the

permeable surface.

By definition, the Sherwood number characterizing

the mass transfer between the fluid over the permeable

surface and the bulk, Shm, is given by:

Shm ¼ �

oc
oz

����
z¼0

ðcs � c0Þ
ð10Þ

and combining Eqs. (9) and (10):

XjzðxÞ ¼ � jzðxÞPe
ShmðxÞ ð11Þ

Assuming total solute retention at the permeable sur-

face, Shm can be related with jz through a simple mass

balance at the permeable surface:

�VmCm ¼ kmðCm � C0Þ ð12Þ

where the permeate velocity, Vm, is negative according to

the coordinate system.

The previous equation can be rewritten taking nor-

malized variables:

jzðxÞ ¼ � ShmðxÞ
Pe

½1� 1=cmðxÞ� ð13Þ
Combining Eqs. (11) and (13), it follows:

XjzðxÞ ¼ 1� 1=cmðxÞ ð14Þ

The parameter defining the regime, XjzðxÞ, is related, in
the above equation, with the solute concentration at the

permeable surface. The solute concentration is difficult

to be known or calculated, and so the next step is to

relate the parameter XjzðxÞ with other parameters of

easier quantification.

Lonsdale et al. [12] expressed the normalized per-

meate velocity by the ratio between the pressure driving

force and the resistance to the flow imposed by the

permeable surface:

vmðxÞ ¼ jzðxÞ ¼ �DPmðxÞ � DpðxÞ
V0Rm

ð15Þ

According to the dimensional analysis performed by

Miranda and Campos [13], the normalized permeate

velocity can be expressed by the following equation:

vmðxÞ ¼ jzðxÞ ¼ � Pv

1�Pp0

½1� cmðxÞPp0 � ð16Þ

where Pv represents the ratio between the permeate ve-

locity through a non-polarized surface and the mean

velocity characteristic of the flow, Pv ¼ DPm�p0
RmV0

, and Pp0

represents the ratio between the osmotic pressure over a

non-polarized surface and the static pressure difference

across the surface, Pp0 ¼ p0
DPm

.

Combining Eqs. (13) and (16), it is possible to relate

cm with measurable parameters. Substituting the result

of this combination in Eq. (14), it yields an implicit

equation in Xjz :

XjzðxÞ ¼
PvPe

ShmðxÞð1�Pp0Þ
1

�
� Pp0

1� XjzðxÞ

�
ð17Þ

Almost all the dimensionless groups in Eq. (17) can be

quantified through the operating conditions, except Shm.
In the literature, Sherwood number based on the stag-

nant film theory, Shmln, is frequently employed in alter-

native to Shm. According to the stagnant film theory,

Shmln is given by:

ShmlnðxÞ ¼ � PejzðxÞ
ln cmðxÞ

ð18Þ

From Eqs. (11), (14) and (18), a relationship between

Sherwood numbers is obtained:

ShmlnðxÞ
ShmðxÞ ¼

XjzðxÞ

ln
1

1� XjzðxÞ

ð19Þ

The substitution of Shm by Shmln in Eq. (17) gives:

ln
1

1� XjzðxÞ
¼ X1ðxÞ

1�Pp0

1

�
� Pp0

1� XjzðxÞ

�
ð20Þ

where:

X1ðxÞ ¼
PvPe
ShmlnðxÞ

ð21Þ
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Eq. (20) is the desired equation; an implicit equation re-

lating the fraction of the normal diffusive flux deviated by

the normal convective flux with measurable dimensionless

parameters.

According to Miranda and Campos [14], the values of

Shmln are well approximated by Sherwood data obtained

in impermeable systems with similar geometry, ShiðxÞ:

X1ðxÞ ¼
PvPe
ShmlnðxÞ

� PvPe
ShiðxÞ ð22Þ

The accuracy of this assumption will be discussed later.
3. Numerical procedure

An improved finite-difference scheme was used to

solve the momentum and solute mass transport equa-

tions. This improved numerical scheme is described in

detailed in Miranda and Campos [15]. Only the basic

principles are going to be briefly described.

For high Peclet number systems, the mass boundary

layer is very thin and to achieve accurate numerical so-

lutions, a very dense grid near the permeable surface

must be used. Inside the boundary layer, the solute

concentration changes intensely, in particular for high

permeate fluxes; the first and second derivatives in order

to the normal direction are high. The shape of the

concentration profiles is close to exponential and so a

variable transformation, h ¼ ln c, was used to attenuate

those derivatives. Applying this transformation, the

shape of the h profiles becomes almost linear and ac-

curate solutions are obtained with large grid spacing.

The orthogonal grid used was denser at the beginning

and at the end of the numerical domain, and in the layer

over the surface, where concentration and velocity gra-

dients have their highest values.

The flow and h equations were discretized by a finite

difference technique. The h equation was transformed

before discretization. After discretization, an iterative

numerical method was used to solve the discretized

equations. The convergence of the iterative process was

studied by two complementary ways: analyzing the evo-

lution of the h values in the layer adjacent to the surface,

and analyzing the sum of the normalized total residues of

the discretized h equation and respective boundary con-

ditions. The accuracy of the numerical method was tested

obtaining solutions on successively refined grids.
Fig. 2. Flow maps representing jz=vm in the vicinity of a per-

meable surface: (a) Re ¼ 100, Pv ¼ 2� 10�4 and Pp0 ¼ 0; (b)

Re ¼ 100,Pv ¼ 10�6 andPp0 ¼ 0; (c) Re ¼ 2000,Pv ¼ 2� 10�4

and Pp0 ¼ 0; (d) Re ¼ 2000, Pv ¼ 10�6 and Pp0 ¼ 0. The dark

line represents the upper limit of the mass boundary layer,

Pe ¼ 105, Pv ¼ 2� 10�4 and Pp0 ¼ 0.
4. Validation of the theoretical analysis

4.1. Normal velocity component in the mass boundary

layer

The theory developed is supported on the assumption

that the normal velocity component, jz, is uniform inside
the mass boundary layer and equal to the permeate ve-

locity. To show the accuracy of this assumption, the

velocity field was simulated for different values of Rey-

nolds and Pv numbers with Pp0 ¼ 0. Taking these pre-

dictions, lines of equal ratio jz=vm were plotted along x
(Fig. 2(a)–(c)).

A line representing the upper limit of the mass

boundary layer was also plotted along x, the dark line in

Fig. 2(a)–(c). The mass boundary layer thickness, d99%,
depends on Peclet, Pv and Pp0 numbers. The line rep-

resented is for the highest value of d99% in the range of

operating conditions studied, i.e., for the lowest Peclet

number, Pe ¼ 105, the highest Pv number, Pv ¼ 2�
10�4, and Pp0 ¼ 0.

Fig. 2(a) shows data for a low Reynolds number,

Re ¼ 100, and a high Pv number, Pv ¼ 2� 10�4. Along

the permeable surface, the value of the ratio jz=vm is
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Fig. 3. (a) Xjz data predicted by Eq. (20) employing values of

Shmln (A, B, C, and D) and of Shif (A
�, B�, C�, and D�) for dif-

ferent values of Pv, with Pe ¼ 106 and Pp0 ¼ 0. (b) Xjz data

predicted by Eq. (20) employing values of Shmln (A, B, C, and D)

and of Shic (A
��, B��, C�� and D��), for different values of Pp0 ,

with Pe ¼ 106 and Pv ¼ 2� 10�4.

780 J.M. Miranda, J.B.L.M. Campos / International Journal of Heat and Mass Transfer 47 (2004) 775–785
equal to unity and decreases for increasing values of z.
For values of z lower than 0.05, the ratio jz=vm is lower

than 0.99, i.e., from the plate until a distance equal to

5% the height of the channel, the normal velocity is al-

most uniform and equal to vm.
Fig. 2(b) shows data for a low Reynolds number,

Re ¼ 100, and a low Pv number, Pv ¼ 10�6. The flow

map is identical to the previous one except in the initial

zone of the surface. This different behavior is conse-

quence of the flow region perturbed by the suction.

While for high Pv numbers, the flow is perturbed in a

region preceding the permeable surface, for low Pv

numbers, the flow is perturbed very close to the begin-

ning of the permeable surface. From this zone on, the

flow map is identical to the previous one.

Fig. 2(c) shows data for a high Reynolds number,

Re ¼ 2000, and a high Pv number, Pv ¼ 2� 10�4.

Comparing Fig. 2(a) and (c), it can be observed a small

change of the flow field at the beginning of the perme-

able surface, consequence of the magnitude of the

Reynolds number. The distance from the surface to the

line representing jz=vm ¼ 0:99 increases with increasing

Reynolds number.

Fig. 2(d) shows data for a high Reynolds number,

Re ¼ 2000, and a low Pv number, Pv ¼ 10�6. The dis-

tance from the surface to the line representing

jz=vm ¼ 0:99 increases with decreasing Pv number.

In all the previous figures, the thickness (an upper

estimative) of the mass boundary layer is always lower

than the distance to the surface of the line representing

jz=vm ¼ 0:99. Therefore, the normal velocity component

can be taken uniform inside the boundary layer, along z,
with an approximation less than 1%.

4.2. Sherwood number in permeable and impermeable

systems

The approximation expressed in Eq. (22) is accurate

if the Sherwood number based on the stagnant film

equation, Shmln, is well estimated by the Sherwood num-

ber obtained in an impermeable system with identical

geometry, Shi. According to Miranda and Campos [14],

for low values of Pp0 , Sh
m
ln is well estimated by Shi data

from an impermeable system with uniform mass pro-

duction at the wall, Shif , while for high values of Pp0 ,

ðPp0 ! 1Þ, Shmln is better estimated by Shi data from an

impermeable system with uniform concentration at the

wall, Shic. To study the accuracy of this approximation,

the Sherwood number based on the stagnant film

equation, Shmln, was calculated through Eq. (18). The

concentration and permeate velocity were obtained from

the numerical solution of the flow and mass governing

equations. The Sherwood number for an impermeable

surface, Shif or Sh
i
c, was also numerically predicted.

Fig. 3(a) shows Xjz data predicted by Eq. (20) em-

ploying values of Shmln and values of Shif , for different
values of Pv, with Pe ¼ 106 and Pp0 ¼ 0. The deviation

between comparable curves increases with increasing Pv

values. The maximum relative deviation observed is

around 5% for Pv ¼ 2� 10�4.

Fig. 3(b) shows Xjz data predicted by Eq. (20) em-

ploying values of Shmln and values of Shic, for different

values of Pp0 , with Pe ¼ 106 and Pv ¼ 2� 10�4. The

deviation between comparable curves decreases with

increasing Pp0 values. The maximum relative deviation

observed is around 10% for Pp0 ¼ 0.

Fig. 3(a) and (b) are illustrative of the accuracy of

Eqs. (20) and (22) to quantify the fraction of the normal

diffusive flux deviated by the normal convective flux, Xjz ,

inside a mass boundary layer with suction.
5. Mass transport regimes

Mass transport regimes inside the mass boundary

layer were studied by numerical simulation. Whatever is

the mass transport regime, the following conditions are

always observed:

• at the permeable surface, the transversal velocity is

zero due to the non-slip condition and the normal
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convective flux must be equal to the normal diffusive

flux;

• the value of the normal convective flux (normalized)

at the upper limit of the mass boundary layer is jz
(the normalized concentration is 1);

• as a result of the mass boundary layer definition, the

concentration gradient and the diffusive mass flux are

zero at the upper limit of the boundary layer.

According to these conditions, some broad consid-

erations about concentration gradients and mass fluxes

inside the mass boundary layer can be stated:

• the diffusive flux must decrease continually from the

surface, where it has amaximum value, until the upper

limit of the boundary layer where its value is zero;

• the normal convective flux must increase continually

from the upper limit of the boundary layer, where it

has a minimum value, until the permeable surface

where it has a maximum value.

5.1. Uniform permeable velocity (Pp0 ¼ 0)

5.1.1. Transversal regime (Xjz60:25)
Fig. 4(a) shows simulation data for x ¼ 2:0, Pe ¼ 106,

Pv ¼ 10�5 and Pp0 ¼ 0. In the ordinate axis are repre-

sented approximated values of each derivative of the

mass transport equation (2), namely:
0
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A
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C

A - normal diffusion
B - transversal convection
C - normal convection
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Fig. 4. (a) Approximated values of each derivative of the mass

transport equation versus z in the transversal regime, Xjz ¼ 0:1;

x ¼ 2:0, Pe ¼ 106, Pv ¼ 10�5 and Pp0 ¼ 0. (b) Concentration

profile and velocity components in the transversal regime,

Xjz ¼ 0:1; x ¼ 2:0, Pe ¼ 106, Pv ¼ 10�5 and Pp0 ¼ 0.
1

Pe
o2c
oz2

� �
ðCurve A––second order approximationÞ

vx
oc
ox

� �
ðCurve B––first order approximationÞ
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For these operating conditions, the value of Xjz , Eqs.

(20) and (21), is 0.1. According to the definition of this

parameter, the area below curve C is 10% of the area

below curve A and the area below curve B is 90% of the

area below curve A.

Analyzing Fig. 4(a), it can be observed that:

• the variation of the convective tangential flux (curve

B) is higher than the variation of the convective nor-

mal flux (curve C);

• in a substantial part of the boundary layer, the vari-

ation of the convective tangential flux (curve B) is

identical to the variation of the normal diffusive flux

(curve A).

Some conclusions can be taken combining the pre-

vious observations with the considerations about the

concentration gradients and mass fluxes stated at the

beginning of this section:

• 90% of the mass transported by diffusion from the

permeable surface is incorporated into the transversal

convective flux and is transported along the flow;

• 10% of the mass transported by diffusion from the

permeable surface is incorporated into the normal

convective flux and return to the surface;

• the normal convective flux increases just near the per-

meable surface, i.e., the small amount of mass devi-

ated from the diffusional flux is incorporated just

over the permeable surface;

• the highest increase of the transversal convective flux

is at the middle of the mass boundary layer.

The consequences of this high amount of mass trans-

ported in the transversal direction and small amount of

mass returning to the permeable surface are: low solute

concentration at the surface and low concentration gra-

dients (along z and x) inside the mass boundary layer.

Fig. 4(b) shows, for x ¼ 2:0, the velocity components

and the concentration profile inside the mass boundary

layer. The magnitude of the transversal velocity com-

ponent is much higher than the magnitude of the normal

component. The concentration at the permeable surface

is 10% higher than the concentration at the bulk (this

value can not be observed in the figure by a question of

data representation). The concentration variation along

z is slow and extends from the surface until almost the

upper limit of the mass boundary layer.
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The limit, Xjz 6 0:25, chosen for this regime, only

means that the mass deviated by the transversal con-

vective flux is at least 3 times greater than the mass

deviated by the normal convective flux.
5.1.2. Normal regime (XjzP0:75)
Fig. 5(a) shows the simulation data for x ¼ 3:4,

Pe ¼ 106, Pv ¼ 2� 10�4 and Pp0 ¼ 0. Curves A, B and

C have the same meaning as those in Fig. 4(a).

For these operating conditions, the value of Xjz , Eqs.

(20) and (21), is 0.9. According to the definition of this

parameter, the area below curve C is 90% of the area

below curve A and the area below curve B is 10% of the

area below curve A.

Analyzing Fig. 5(a), it can be observed that:

• the variations of the fluxes along the boundary layer

are much higher in the normal regime than in the

transversal regime;

• the variation of the transversal flux increases slightly

at a short distance from the surface and maintains a

low value along z;
• the variations of the normal convective flux and of

the normal diffusive flux decrease in a similar way,

from the surface to the upper limit of the boundary

layer.
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Fig. 5. (a) Approximated values of each derivative of the mass

transport equation versus z in the normal regime, Xjz ¼ 0:9;

x ¼ 3:4, Pe ¼ 106, Pv ¼ 2� 10�4 and Pp0 ¼ 0. (b) Concentra-

tion profile and velocity components in the normal regime,

Xjz ¼ 0:9; x ¼ 3:4, Pe ¼ 106, Pv ¼ 2� 10�4 and Pp0 ¼ 0.
Some conclusions can be taken combining the pre-

vious observations with the considerations about the

concentration gradients and the mass fluxes stated at the

beginning of this section:

• 90% of the mass transported by diffusion from the

permeable surface is incorporated into the normal

convective flux and returns to the permeable surface;

• 10% of the mass transported by diffusion from the

permeable surface is incorporated into the transversal

convective flux and is transported along the flow;

• the transversal convective flux increases more or less

uniformly across the mass boundary layer;

• the highest increase of the normal convective flux is

at the permeable surface.

The consequences of this difficult transversal trans-

port and high amount of mass incorporated into the

normal convective flux are: high solute concentration at

the permeable surface and high concentration gradients

(along z and x) inside the boundary layer.

Fig. 5(b) shows, for x ¼ 3:4, the velocity components

and the concentration profile along z inside the mass

boundary layer. The normal velocity component is one

order of magnitude higher than in the transversal re-

gime. The concentration at the permeable surface is

920% higher than the concentration at the bulk (this

value cannot be observed in the figure by a question of

data representation). The concentration variation along

z is high until the middle of the mass boundary layer

ðz � 0:008Þ and insignificant from the middle until the

upper limit.

The limit, Xjz P 0:75, chosen for this regime, only

means that the mass deviated by the normal convective

flux is at least three times greater than the mass deviated

by the transversal convective flux.

5.1.3. Intermediate regime (0:256Xjz60:75)
Fig. 6(a) shows the simulation data for x ¼ 0:7, Pe ¼

106,Pv ¼ 10�4 andPp0 ¼ 0. Curves A, B and C have the

same meaning as those represented in Figs. 4(a) and 5(a).

For these operating conditions, the value of Xjz , Eqs.

(20) and (21), is 0.5. According to the definition of this

parameter, the area below curve C is 50% of the area

below curve A and the area below curve B is 50% of the

area below curve A.

Analyzing the figure, it can be observed that:

• the variations of the fluxes across the boundary layer

are much lower in the intermediate regime than in the

normal regime, but are higher than in the transversal

regime;

• the variation of the transversal flux increases until the

middle of the mass boundary layer where it reaches a

maximum value and after decreases until the upper

limit;
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Fig. 6. (a) Approximated values of each derivative of the mass

transport equation versus z in the intermediate regime,

Xjz ¼ 0:5; x ¼ 0:7, Pe ¼ 106, Pv ¼ 10�4 and Pp0 ¼ 0. (b) Con-

centration profile and velocity components in the intermediate

regime, Xjz ¼ 0:5; x ¼ 0:7, Pe ¼ 106, Pv ¼ 10�4 and Pp0 ¼ 0.
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• the variation of the normal convective flux decreases

from the permeable surface until the upper limit of

the mass boundary layer.

Some conclusions can be taken combining the pre-

vious observations with the considerations about the

concentration gradients and the mass fluxes stated at the

beginning of this section.

• 50% of the mass transported by diffusion from the

permeable surface is incorporated into the normal

convective flux and 50% is incorporated into the

transversal convective flux;

• the highest increase of the transversal convective flux

is at the middle of the mass boundary layer;

• the highest increase of the normal convective flux is

at the permeable surface.

Fig. 6(b) shows, for x ¼ 0:7, the velocity components

and the concentration profile inside the mass boundary

layer. An intermediate behavior between tangential and

normal regimes can be observed.

5.2. Variable permeate velocity (Pp0 6¼ 0)

The previous analysis was for uniform permeate ve-

locity along x, condition observed when Pp0 ¼ 0, i.e., for

a non-polarized permeable surface. Fig. 7 shows the
parameter Xjz plotted versus X1, Eqs. (20) and (21), for

different values of Pp0 . Several interesting conclusions

can be taken from this figure:

• for a given value of Pp0 , the mass transported by nor-

mal convection increases with increasing values of

X1, i.e., with increasing vales of Pe and Pv, and de-

creasing values of Shmln. However, this increase is sig-

nificant only for values of X1 < 2:0. From there on

Xjz tends asymptotically for a constant value;

• the normal regime ðXjz P 0:75Þ is observed in a

straight range of operating conditions, 06Pp0 6

0:2. For Pp0 ¼ 0, the normal regime is observed if

X1 P 1:5 and for Pp0 ¼ 0:2, the normal regime is ob-

served if X1 P 4:0;
• the normal convective transport decreases strongly

with increasing values of Pp0 . For Pp0 P 0:4, what-
ever is the value of X1, the transversal convective

transport is always higher than the normal convective

transport ðXjz 6 0:5Þ;
• the transversal regime ðXjz 6 0:25Þ is observed in a

large range of operating conditions. For values of

Pp0 between 0.7 and 1.0, the regime is transversal

whatever the value of X1.

5.2.1. Regimes and concentration polarization

Miranda and Campos [13] defined adequate polar-

ization indexes based on limit concentration and velocity

conditions. The concentration index was defined by the

following ratio:

Ic ¼
cm � 1

1=Pp0 � 1
ð23Þ

where the numerator expresses the difference between

the actual surface concentration and the minimum sur-

face concentration, and the denominator all the surface

concentration range.

The concentration polarization is an important phe-

nomenon in membrane separation processes and so it is

important to know how mass transport regimes and



Fig. 8. Polarization concentration index Ic versus Xjz , Eq. (24),

for several values of Pp0 .
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polarization concentration level are related. Combining

Eqs. (14) and (23) a relationship between Ic and Xjz is

found:

Ic ¼
Xjz

ð1� XjzÞ 1
Pp0

� 1
� � ð24Þ

Fig. 8 shows the concentration index Ic versus Xjz for

several values of Pp0 ð0 < Pp0 < 1Þ. For low values of

Pp0 , for examplePp0 ¼ 0:1, the polarization index begins

to be low in the transversal and intermediate regimes

(low values of X1) and increases strongly in the normal

regime (high values of X1). For increasing values of Pp0 ,

the regime tends to be transversal in all the range of X1

(condition observed for Pp0 P 0:7), the concentration

gradients along x and y directions decrease and the po-

larization index increases, strongly, with X1.
6. Conclusions

After this work, the convective mass transport fluxes

inside a laminar mass boundary layer over a permeable

surface with suction can be easily compared. A simple

implicit equation, Eq. (20), was deduced relating the

fraction of the normal diffusive flux deviated by the

normal convective flux, Xjz , with measurable dimen-

sionless variables: Pe, Pp0 , Pv and Shi. According to the

dominant convective flux, different mass transport re-

gimes were established: normal regime, Xjz P 0:75,
transversal regime Xjz 6 0:25, and intermediate regime

0:256Xjz 6 0:75.
The questions stated in the introduction of this work

can be definitively answered:

• the suction perturbs the flow in a narrow region very

close to the permeable surface and the extension of

this region depends on Reynolds and Pv numbers;

• the normal velocity component is, whatever the oper-

ating conditions, uniform inside the mass boundary

layer;
• the normal convective flux and the normal diffusive

flux are not equal inside the mass boundary layer,

as some authors refer;

• the amount of the normal diffusive flux deviated by

each convective flux can be calculated by Eqs. (20)

and (22), and to do so, only measurable operating

variables are needed;

• the transversal convective flux tends to flat and

smooth the concentration profiles in both directions,

x and z, inside the mass boundary layer;

• the polarization concentration level in a separation

membrane can be related with the mass transport re-

gime inside the mass boundary layer, Eq. (24).
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